Introduction
- Progressive Myoclonus Epilepsy (PME) with onset between late childhood and late adolescence includes several conditions:
- Neuronal ceroid lipofuscinosis
- Type I sialidosis
- Myoclonic epilepsy with ragged red fibers
- Most common forms of PME in this age group:
- Lafora disease
- Unverricht–Lundborg disease (ULD)
Unverricht–Lundborg Disease
Clinical Characteristics and Neurophysiology
- ULD is an autosomal recessive PME.
- Onset: Between ages 6 and 15 years, following a period of normal development.
- Principal characteristics:
- Stimulus-sensitive myoclonus: Sudden, brief, shocklike muscle contractions interfering with activities like writing, swallowing, speaking, and walking. Can be precipitated by simple intention to move (Harenko 1961, Koskiniemi 1974a, Koskiniemi 1974b, Koskiniemi 1974c).
- Tonic-clonic and myoclonic seizures: Appear early, with other types of seizures potentially presenting later.
- Disease progression: Slow, with ataxia, action tremor, and emotional lability. Patients experience a slow decline in intelligence.
- Influence of antiepileptic medications:
- Phenytoin: Exquisitely neurotoxic, previously contributing to severe progressive myoclonus and cerebellar ataxia.
- Proper management: Can avert dementia, minimize myoclonus and seizures, and maintain a normal lifespan (Lehesjoki 2002).
- Preferred anticonvulsants: Valproic acid, zonisamide, and levetiracetam. Piracetam helps against myoclonus.
- N-Acetylcysteine (NAC): Improves tremor, gait, and myoclonus in some patients. Mechanism of action is poorly understood, possibly related to protection against oxidative stress and antiapoptotic effects in neurons deprived of nerve growth factor (Ferrari 1995, Hurd 1996).
- Electroencephalographic (EEG) recordings: Abnormal even before symptom onset (Koskiniemi 1974).
- Features: Disorganized and slow background activity, fast spike-waves or polyspike-waves with larger amplitudes in central regions, prominent photosensitivity.
- Frequency of EEG paroxysms diminishes with rational antiepileptic treatment (Lehesjoki 1999).
- Stimulus-sensitive myoclonus: Lacks a visible EEG correlate but shows time-locked cortical spikes preceding the myoclonic jerks in back-averaging analysis (Shibasaki 2000).
- Giant somatosensory evoked potentials (SEPs) and enhanced long-loop (cortical) reflex (LLR) indicate cortical hyperexcitability in ULD myoclonus (Lehesjoki 1999).
EPM1, the ULD Gene
- Identification: Using positional cloning. A genome-wide search in 12 families localized the gene to 21q22.3 (Shibasaki 2000).
- Gene: Cystatin B (CSTB), previously known but unmapped. Identified through linkage disequilibrium analysis and systematic gene search.
- Mutations:
- Six different mutations identified in the coding region.
- Three affect conserved splice-site sequences, predicting severe splicing defects (1926-1G→C, 2027G→A, 2355-2A→G).
- Two mutations in exon 3 (R68X nonsense codon, 2400 delTC frameshift) predict truncated protein.
- Transversion in exon 1 results in substitution of glycine by arginine at amino acid position 4 (G4R) (Pennacchio 1996, Lalioti 1997, Virtaneva 1997).
- Additional findings:
- Only 10% of EPM1 alleles contain mutations within the transcriptional unit.
- Abnormally large EPM1-containing fragments in ULD patients due to a dodecamer repeat expansion upstream from the translation initiation codon.
- Normal alleles: Two to three tandem copies of the dodecamer (rarely 12–17 repeats).
- ULD patients: 30 to 150 copies, leading to reduced expression of EPM1 mRNA (Virtaneva 1997, Lafreniere 1997, Lalioti 1997, Lalioti 1997b, Virtaneva 1998).
- Preliminary analysis: No correlation between the number of repeats and clinical severity or age of onset.
Cystatin B and the Cystatin B-Deficient Mouse
- Cystatin superfamily: Encompasses proteins with multiple cystatin-like sequences, some of which are active cysteine protease inhibitors.
- CSTB: A stefin functioning as an intracellular protease inhibitor, inhibiting papain and cathepsins B, H, L, and S in vitro (Ritonja 1985).
- Histopathological studies in ULD patients:
- Findings: Cerebellar granular and Purkinje cell loss, gliosis, neuronal degeneration in various brain regions (Koskiniemi 1974b, Haltia 1969, Eldridge 1983).
- Genetic mutation or phenytoin neurotoxicity: Resolved by studying EPM1 knockout mice not treated with phenytoin (Pennacchio 1998).
- Findings in mice: Myoclonic seizures, ataxia, apoptosis of cerebellar granular and Purkinje cells, cortical and striatal gliosis, and atrophy of cortical neurons (Shannon 2002).
- Additional studies:
- Differential display oligonucleotide microarray hybridization and quantitative reverse transcriptase polymerase chain reaction: Elevated cathepsin S levels, suggesting its role in apoptosis initiation in ULD (Lieuallen 2001).
- Elevated mRNA levels of β2-microglobulin, apolipoprotein D, fibronectin 1, Gfap, and C1qB in CSTB-deficient mice, indicating glial activation (Lieuallen 2001).
- Neuroprotective role of CSTB:
- Endogenous neuroprotective mechanism: Elevation of EPM1 mRNA and CSTB levels in response to seizures induced by kindling brain stimulation (D'Amato 2000).
- Research challenges:
- Determining the pathophysiologically relevant function of CSTB and identifying any alternate functions.
- Lack of genetic heterogeneity in ULD hinders the genetic unraveling of a second pathway intersecting with the CSTB pathway.
Lafora Disease
Clinical Characteristics
- LD: Autosomal recessive PME.
- Onset: Between ages 9 and 18 years, following a period of normal development (Minassian 2002).
- Retrospective family observations: Some “slowness” in childhood compared to unaffected children.
- Subphenotype: Learning disabilities in childhood associated with particular mutations (Ganesh 2002).
- Febrile and rare afebrile seizures: More common in LD than in the general population (Minassian 2002).
- Symptoms bringing clinical attention:
- Myoclonic jerks
- Generalized seizure
- Decline in school performance
- Behavioral changes (depression, apathy, disinhibition, delusions)
- Visual (occipital ictal) hallucinations
- EEG findings: Slowing of background with irregular spike-wave discharges.
- Disease acceleration: Worsening of all manifestations, additional seizure types, and cognitive and behavioral decline within 2 years of diagnosis.
- Myoclonus: Frequent during wakeful hours, especially in the early morning, ceases with sleep. Affects walking, leading to wheelchair dependence.
- Stimulus-sensitive myoclonus: Provoked by movement, intention, light changes, and exacerbated by emotion.
- Cognitive decline, emotional lability, visual hallucinations, delusions, disinhibited behavior, and social rejection.
- Within 5 to 10 years: Bed bound, usually tube fed, almost constant myoclonus and ictal confusion.
- Antiepileptic treatment:
- Traditional: Valproic acid.
- Recent: Zonisamide shown to have a significant effect on seizures and myoclonus, becoming the first-line choice (Yoshimura 2001, Kyllerman 1998).
- Temporary help: Piracetam and levetiracetam against myoclonus (Boccella 2003).
- Ketogenic diet: Important therapeutic modality, showing potential to slow disease progression by reducing carbohydrate intake.
Neurophysiology
- EEG:
- Slow background activity with dominant theta-delta components interrupted by recurrent posterior or diffuse multiple spikes discharges (Tassinari 1978).
- Prominent generalized or segmental spontaneous myoclonus with clear EEG paroxysms.
- Negative myoclonus associated with polyspike-wave discharges (Shibasaki 2002).
- Somatosensory evoked potentials (SEPs):
- Large amplitude cortical SEPs indicate aberrant integration of somatosensory stimuli involving motor cortex.
- Somatosensory afferent stimuli abnormally facilitating motor cortex excitability in PME (Reutens 1993, Manganotti 2001).
- Spectral analyses:
- Beta-gamma oscillations between motor cortex and muscle during movement-activated myoclonic discharges.
- Pathologically exaggerated fast rhythms likely drive the generation of cortical myoclonus (Brown 1999, Panzica 2003).
Pathology
- Lafora bodies (LB):
- Present in the brain and almost every other organ, particularly liver and muscle.
- Largely found in neurons, localizing in the perikaryal region and dendrites.
- Stain strongly with periodic acid–Schiff, composed of polyglucosan (Sakai 1970).
- Unlike glycogen, polyglucosans lack a regular branching pattern and resemble starch more closely.
- Newly forming polyglucosan fibrils physically associated with the endoplasmic reticulum (ER) or ribosomes (Collins 1968, Toga 1968).
- Present in the brain and almost every other organ, particularly liver and muscle.
Genetics of Lafora Disease
- EPM2A gene:
- Identified using positional cloning on chromosome 6q24 (Minassian 1998).
- Encodes laforin, a protein with two isoforms: A (ER localization) and B (nucleus localization) (Ganesh 2002).
- A total of 36 or more mutations identified, accounting for ~48% of LD cases (Minassian 1998, Ganesh 2002).
- EPM2B gene:
- Genetic locus heterogeneity demonstrated, leading to the identification of EPM2B on 6p22.3 in a French-Canadian isolate (Chan 2003).
- Encodes malin, a protein with a RING finger motif and six NHL-repeat motifs (Chan 2003).
- Malin acts as an E3 ubiquitin ligase, targeting specific substrates for degradation.
- Further genetic heterogeneity:
- 88% of LD families accounted for by mutations in EPM2A (48%) and EPM2B (40%) (Chan 2003).
- Third genome-wide linkage scan underway to identify additional LD genes.
Laforin Protein–Protein Interactors
- Three candidate protein partners identified using yeast two-hybrid experiments:
- EPM2AIP1: Interacts with intact laforin, localizes to the ER (Ianzano 2003).
- HIRIP5: Contains NifU-like and MurD ligase domains, potential substrate for laforin (Ganesh 2003).
- R5: Involved in glycogen metabolism, interacts with laforin in the same region as enzymes regulated by protein phosphatase (PP1) (Fernandez-Sanchez 2003).
Epm2a Knockout Mouse Model
- Generated to study LD:
- Prominent periodic acid–Schiff (PAS)-positive inclusions in neurons starting at 2 months of age.
- Neurodegeneration and presence of LB predating any phenotypical anomalies.
- Behavioral impairments, myoclonic seizures, ataxia, and EEG epileptiform activity observed later (Ganesh 2002).
Pathogenesis of Lafora Disease
- LB composition: Polyglucosans with irregular branching, likely due to defects in glycogen metabolism enzymes.
- Comparison with other conditions:
- Andersen disease (glycogen storage disease type IV) and adult polyglucosan body disease (APBD) involve polyglucosans but differ in clinical presentation and intracellular compartment localization (Raben 2001, Pederson 2003, Robitaille 1980).
- Neuronal degeneration: Linked to the presence of polyglucosans in dendrites and perikaryal regions, affecting neuronal signaling and causing hyperexcitability.
- EPM2B-encoded malin: Likely an E3 ubiquitin ligase, targeting specific substrates for degradation (Hatakeyama 2003).
Key Research Goals
- Identification of additional LD genes.
- Understanding the polyglucosan biochemical pathway.
- Exploring the dendritic compartmentalization of LB.
- Examining the independence of neurodegeneration from LB accumulation.
- Determining the roles of neurodegeneration and LB in the epilepsy of LD.
References
- Harenko A, Toiv Akka EI. Myoclonus epilepsy (Univerricht–Lundborg) in Finland. Acta Neurol Scand 1961;37:282 296.
- Koskiniemi M (1974) Psychological findings in progressive myoclonus epilepsy without Lafora bodies. Epilepsia 15 (4):537-45. PMID: 4279170.
- Koskiniemi M, Donner M, Majuri H, Haltia M, Norio R (1974) Progressive myoclonus epilepsy. A clinical and histopathological study. Acta Neurol Scand 50 (3):307-32. PMID: 4835645.
- Koskiniemi M, Toivakka E, Donner M (1974) Progressive myoclonus epilepsy. Electroencephalographical findings. Acta Neurol Scand 50 (3):333-59. PMID: 4835646
- Lehesjoki AE (2002) Clinical features and genetics of Unverricht-Lundborg disease. Adv Neurol 89 ():193-7. PMID: 11968445.
- Hurd RW, Wilder BJ, Helveston WR, Uthman BM (1996) Treatment of four siblings with progressive myoclonus epilepsy of the Unverricht-Lundborg type with N-acetylcysteine. Neurology 47 (5):1264-8. PMID: 8909441.
- Ferrari G, Yan CY, Greene LA (1995) N-acetylcysteine (D- and L-stereoisomers) prevents apoptotic death of neuronal cells. J Neurosci 15 (4):2857-66. PMID: 7722634.
- Lehesjoki AE, Koskiniemi M (1999) Progressive myoclonus epilepsy of Unverricht-Lundborg type. Epilepsia 40 Suppl 3 ():23-8. PMID: 10446747.
- Shibasaki H (2000) Electrophysiological studies of myoclonus. Muscle Nerve 23 (3):321-35. PMID: 10679708.
- Lehesjoki AE, Koskiniemi M, Norio R, Tirrito S, Sistonen P, Lander E et al. (1993) Localization of the EPM1 gene for progressive myoclonus epilepsy on chromosome 21: linkage disequilibrium allows high resolution mapping. Hum Mol Genet 2 (8):1229-34. PMID: 8104628.
- Pennacchio LA, Lehesjoki AE, Stone NE, Willour VL, Virtaneva K, Miao J et al. (1996) Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1) Science 271 (5256):1731-4. PMID: 8596935.
- Lalioti MD, Mirotsou M, Buresi C, Peitsch MC, Rossier C, Ouazzani R et al. (1997) Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1). Am J Hum Genet 60 (2):342-51. PMID: 9012407.
- Virtaneva K, D'Amato E, Miao J, Koskiniemi M, Norio R, Avanzini G et al. (1997) Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1. Nat Genet 15 (4):393-6. DOI: 10.1038/ng0497-393 PMID: 9090386.
- Lafrenière RG, Rochefort DL, Chrétien N, Rommens JM, Cochius JI, Kälviäinen R et al. (1997) Unstable insertion in the 5' flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPM1. Nat Genet 15 (3):298-302. DOI: 10.1038/ng0397-298 PMID: 9054946.
- Lalioti MD, Scott HS, Antonarakis SE (1997) What is expanded in progressive myoclonus epilepsy? Nat Genet 17 (1):17. DOI: 10.1038/ng0997-17 PMID: 9288090.
- Lalioti MD, Scott HS, Buresi C, Rossier C, Bottani A, Morris MA et al. (1997) Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386 (6627):847-51. DOI: 10.1038/386847a0 PMID: : 9126745.
- Virtaneva K, Paulin L, Krahe R, de la Chapelle A, Lehesjoki AE (1998) The minisatellite expansion mutation in EPM1: resolution of an initial discrepancy. Mutatations in brief no. 186. Online. Hum Mutat 12 (3):218. PMID: 10660338.
- Lalioti MD, Scott HS, Antonarakis SE (1999) Altered spacing of promoter elements due to the dodecamer repeat expansion contributes to reduced expression of the cystatin B gene in EPM1. Hum Mol Genet 8 (9):1791-8. PMID: 10441345.
- Ritonja A, Popovic T, Turk V, Wiedenmann K, Machleidt W (1985) Amino acid sequence of human liver cathepsin B. FEBS Lett 181 (1):169-72. PMID: 3972105.
- Haltia M, Kristensson K, Sourander P (1969) Neuropathological studies in three Scandinavian cases of progressive myoclonus epilepsy. Acta Neurol Scand 45 (1):63-77. PMID: 4979532.
- Eldridge R, Iivanainen M, Stern R, Koerber T, Wilder BJ (1983) "Baltic" myoclonus epilepsy: hereditary disorder of childhood made worse by phenytoin. Lancet 2 (8354):838-42. PMID: 6137660.
- Pennacchio LA, Bouley DM, Higgins KM, Scott MP, Noebels JL, Myers RM (1998) Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet 20 (3):251-8. DOI: 10.1038/3059 PMID: 9806543.
- Shannon P, Pennacchio LA, Houseweart MK, Minassian BA, Myers RM (2002) Neuropathological changes in a mouse model of progressive myoclonus epilepsy: cystatin B deficiency and Unverricht-Lundborg disease. J Neuropathol Exp Neurol 61 (12):1085-91. PMID: 12484571.
- Lieuallen K, Pennacchio LA, Park M, Myers RM, Lennon GG (2001) Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Hum Mol Genet 10 (18):1867-71. PMID: 11555622
- Cotter RL, Burke WJ, Thomas VS, Potter JF, Zheng J, Gendelman HE (1999) Insights into the neurodegenerative process of Alzheimer's disease: a role for mononuclear phagocyte-associated inflammation and neurotoxicity. J Leukoc Biol 65 (4):416-27. PMID: 10204569.
- Liberski PP, Brown P, Cervenakova L, Gajdusek DC (1997) Interactions between astrocytes and oligodendroglia in human and experimental Creutzfeldt-Jakob disease and scrapie. Exp Neurol 144 (1):227-34. DOI: 10.1006/exnr.1997.6422 PMID: 9126175
- D'Amato E, Kokaia Z, Nanobashvili A, Reeben M, Lehesjoki AE, Saarma M et al. (2000) Seizures induce widespread upregulation of cystatin B, the gene mutated in progressive myoclonus epilepsy, in rat forebrain neurons. Eur J Neurosci 12 (5):1687-95. PMID: 10792446.
- Minassian BA (2002) Progressive myoclonus epilepsy with polyglucosan bodies: Lafora disease. Adv Neurol 89 ():199-210. PMID: 11968446.
- Ganesh S, Delgado-Escueta AV, Suzuki T, Francheschetti S, Riggio C, Avanzini G et al. (2002) Genotype-phenotype correlations for EPM2A mutations in Lafora's progressive myoclonus epilepsy: exon 1 mutations associate with an early-onset cognitive deficit subphenotype. Hum Mol Genet 11 (11):1263-71. PMID: 12019207.
- Yoshimura I, Kaneko S, Yoshimura N, Murakami T (2001) Long-term observations of two siblings with Lafora disease treated with zonisamide. Epilepsy Res 46 (3):283-7. PMID: 11518630.
- Kyllerman M, Ben-Menachem E (1998) Zonisamide for progressive myoclonus epilepsy: long-term observations in seven patients. Epilepsy Res 29 (2):109-14. PMID: 9477142.
- Boccella P, Striano P, Zara F, Barbieri F, Sarappa C, Vacca G et al. (2003) Bioptically demonstrated Lafora disease without EPM2A mutation: a clinical and neurophysiological study of two sisters. Clin Neurol Neurosurg 106 (1):55-9. PMID: 14643920.
- Tassinari CA, Bureau-Paillas M, Dalla Bernardina B, Picornell-Darder I, Mouren MC, Dravet C et al. (1978) [Lafora disease (author's transl)]. Rev Electroencephalogr Neurophysiol Clin 8 (1):107-22. PMID: 96498.
- Shibasaki H (2002) Physiology of negative myoclonus. Adv Neurol 89 ():103-13. PMID: 11968435.
- Reutens DC, Puce A, Berkovic SF (1993) Cortical hyperexcitability in progressive myoclonus epilepsy: a study with transcranial magnetic stimulation. Neurology 43 (1):186-92. PMID: 8423883.
- Manganotti P, Tamburin S, Zanette G, Fiaschi A (2001) Hyperexcitable cortical responses in progressive myoclonic epilepsy: a TMS study. Neurology 57 (10):1793-9. PMID: 11723265.
- Silén T, Forss N, Salenius S, Karjalainen T, Hari R (2002) Oscillatory cortical drive to isometrically contracting muscle in Unverricht-Lundborg type progressive myoclonus epilepsy (ULD). Clin Neurophysiol 113 (12):1973-9. PMID: 12464336.
- Brown P, Farmer SF, Halliday DM, Marsden J, Rosenberg JR (1999) Coherent cortical and muscle discharge in cortical myoclonus. Brain 122 ( Pt 3) ():461-72. PMID: 10094255.
- Panzica F, Canafoglia L, Franceschetti S, Binelli S, Ciano C, Visani E et al. (2003) Movement-activated myoclonus in genetically defined progressive myoclonic epilepsies: EEG-EMG relationship estimated using autoregressive models. Clin Neurophysiol 114 (6):1041-52. PMID: 12804673
- Cavanagh JB (1999) Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29 (2-3):265-95. PMID: 10209236.
- Nishimura RN, Ishak KG, Reddick R, Porter R, James S, Barranger JA (1980) Lafora disease: diagnosis by liver biopsy. Ann Neurol 8 (4):409-15. DOI: 10.1002/ana.410080412 PMID: 6254436.
- Carpenter S, Karpati G (1981) Ultrastructural findings in Lafora disease. Ann Neurol 10 (1):63-4. DOI: 10.1002/ana.410100116 PMID: : 6791573.
- SCHWARZ GA, YANOFF M (1965) LAFORA'S DISEASE. DISTINCT CLINICO-PATHOLOGIC FORM OF UNVERRICHT'S SYNDROME. Arch Neurol 12 ():172-88. PMID: 14237775.
- Janeway R, Ravens JR, Pearce LA, Odor DL, Suzuki K (1967) Progressive myoclonus epilepsy with Lafora inclusion bodies. I. Clinical, genetic, histopathologic, and biochemical aspects. Arch Neurol 16 (6):565-82. PMID: 6026066.
- Gambetti P, Di Mauro S, Hirt L, Blume RP (1971) Myoclonic epilepsy with lafora bodies. Some ultrastructural, histochemical, and biochemical aspects. Arch Neurol 25 (6):483-93. PMID: 4329923.
- Neville HE, Brooke MH, Austin JH (1974) Studies in myoclonus epilepsy. (Lafora body form). IV. Skeletal muscle abnormalities. Arch Neurol 30 (6):466-74. PMID: 4133238.
- Carpenter S, Karpati G, Andermann F, Jacob JC, Andermann E (1974) Lafora's disease: peroxisomal storage in skeletal muscle. Neurology 24 (6):531-8. PMID: 4220225.
- Van Heycop ten Ham M. Lafora disease, a form of progressive myoclonus epilepsy. Handb Clin Neurol 1974;15:382 422.
- Busard HL, Renier WO, Gabreëls FJ, Jaspar HH, Slooff JL, Janssen AJ et al. (1987) Lafora disease: a quantitative morphological and biochemical study of the cerebral cortex. Clin Neuropathol 6 (1):1-6. PMID: 3032486.
- Sakai M, Austin J, Witmer F, Trueb L (1970) Studies in myoclonus epilepsy (Lafora body form). II. Polyglucosans in the systemic deposits of myoclonus epilepsy and in corpora amylacea. Neurology 20 (2):160-76. PMID: 4188951.
- Collins GH, Cowden RR, Nevis AH (1968) Myoclonus epilepsy with Lafora bodies. An ultrastruc- tural and cytochemical study. Arch Pathol 86 (3):239-54. PMID: 4877594.
- Toga M, Dubois D, Hassoun J (1968) [Ultrastructure of Lafora bodies]. Acta Neuropathol 10 (2):132-42. PMID: 5707964.
- Minassian BA, Lee JR, Herbrick JA, Huizenga J, Soder S, Mungall AJ et al. (1998) Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet 20 (2):171-4. DOI: 10.1038/2470 PMID: 9771710
- Ganesh S, Suzuki T, Yamakawa K (2002) Alternative splicing modulates subcellular localization of laforin. Biochem Biophys Res Commun 291 (5):1134-7. DOI: 10.1006/bbrc.2002.6590 PMID: 11883934.
- Ianzano L, Young EJ, Zhao XC, Chan EM, Rodriguez MT, Torrado MV et al. (2004) Loss of function of the cytoplasmic isoform of the protein laforin (EPM2A) causes Lafora progressive myoclonus epilepsy. Hum Mutat 23 (2):170-6. DOI: 10.1002/humu.10306 PMID: 14722920.
- Minassian BA, Ianzano L, Meloche M, Andermann E, Rouleau GA, Delgado-Escueta AV et al. (2000) Mutation spectrum and predicted function of laforin in Lafora's progressive myoclonus epilepsy. Neurology 55 (3):341-6. PMID: 10932264.
- Ganesh S, Agarwala KL, Amano K, Suzuki T, Delgado-Escueta AV, Yamakawa K (2001) Regional and developmental expression of Epm2a gene and its evolutionary conservation. Biochem Biophys Res Commun 283 (5):1046-53. DOI: 10.1006/bbrc.2001.4914 PMID: 11355878.
- Minassian BA, Andrade DM, Ianzano L, Young EJ, Chan E, Ackerley CA et al. (2001) Laforin is a cell membrane and endoplasmic reticulum-associated protein tyrosine phosphatase. Ann Neurol 49 (2):271-5. PMID: 11220751.
- Ganesh S, Agarwala KL, Ueda K, Akagi T, Shoda K, Usui T et al. (2000) Laforin, defective in the progressive myoclonus epilepsy of Lafora type, is a dual-specificity phosphatase associated with polyribosomes. Hum Mol Genet 9 (15):2251-61. PMID: 11001928.
- Wang J, Stuckey JA, Wishart MJ, Dixon JE (2002) A unique carbohydrate binding domain targets the lafora disease phosphatase to glycogen. J Biol Chem 277 (4):2377-80. DOI: 10.1074/jbc.C100686200 PMID: 11739371.
- Minassian BA, Sainz J, Serratosa JM, Gee M, Sakamoto LM, Bohlega S et al. (1999) Genetic locus heterogeneity in Lafora's progressive myoclonus epilepsy. Ann Neurol 45 (2):262-5. PMID: 9989632
- Chan EM, Bulman DE, Paterson AD, Turnbull J, Andermann E, Andermann F et al. (2003) Genetic mapping of a new Lafora progressive myoclonus epilepsy locus (EPM2B) on 6p22. J Med Genet 40 (9):671-5. PMID: 12960212.
- Chan EM, Young EJ, Ianzano L, Munteanu I, Zhao X, Christopoulos CC et al. (2003) Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet 35 (2):125-7. DOI: 10.1038/ng1238 PMID: 12958597.
- Ianzano L, Zhao XC, Minassian BA, Scherer SW (2003) Identification of a novel protein interacting with laforin, the EPM2a progressive myoclonus epilepsy gene product. Genomics 81 (6):579-87. PMID: 12782127.
- Ganesh S, Tsurutani N, Suzuki T, Ueda K, Agarwala KL, Osada H et al. (2003) The Lafora disease gene product laforin interacts with HIRIP5, a phylogenetically conserved protein containing a NifU-like domain. Hum Mol Genet 12 (18):2359-68. DOI: 10.1093/hmg/ddg253 PMID: 12915448
- Fernández-Sánchez ME, Criado-García O, Heath KE, García-Fojeda B, Medraño-Fernández I, Gomez-Garre P et al. (2003) Laforin, the dual-phosphatase responsible for Lafora disease, interacts with R5 (PTG), a regulatory subunit of protein phosphatase-1 that enhances glycogen accumulation. Hum Mol Genet 12 (23):3161-71. DOI: 10.1093/hmg/ddg340 PMID: 14532330.
- Doherty MJ, Young PR, Cohen PT (1996) Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver- and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett 399 (3):339-43. PMID: 8985175.
- Printen JA, Brady MJ, Saltiel AR (1997) PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science 275 (5305):1475-8. PMID: 9045612.
- Fong NM, Jensen TC, Shah AS, Parekh NN, Saltiel AR, Brady MJ (2000) Identification of binding sites on protein targeting to glycogen for enzymes of glycogen metabolism. J Biol Chem 275 (45):35034-9. DOI: 10.1074/jbc.M005541200 PMID: 10938087.
- Ganesh S, Delgado-Escueta AV, Sakamoto T, Avila MR, Machado-Salas J, Hoshii Y et al. (2002) Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet 11 (11):1251-62. PMID: 12019206.
- Moses SW, Parvari R (2002) The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies. Curr Mol Med 2 (2):177-88. PMID: 11949934.
- Schochet SS, McCormick WF, Zellweger H (1970) Type IV glycogenosis (amylopectinosis). Light and electron microscopic observations. Arch Pathol 90 (4):354-63. PMID: 5272555.
- Raben N, Danon M, Lu N, Lee E, Shliselfeld L, Skurat AV et al. (2001) Surprises of genetic engineering: a possible model of polyglucosan body disease. Neurology 56 (12):1739-45. PMID: 11425943.
- Pederson BA, Csitkovits AG, Simon R, Schroeder JM, Wang W, Skurat AV et al. (2003) Overexpression of glycogen synthase in mouse muscle results in less branched glycogen. Biochem Biophys Res Commun 305 (4):826-30. PMID: 12767905.
- Ziemssen F, Sindern E, Schröder JM, Shin YS, Zange J, Kilimann MW et al. (2000) Novel missense mutations in the glycogen-branching enzyme gene in adult polyglucosan body disease. Ann Neurol 47 (4):536-40. PMID: 10762170.
- Robitaille Y, Carpenter S, Karpati G, DiMauro SD (1980) A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral neuronal processes and astrocytes: a report of four cases and a review of the occurrence of polyglucosan bodies in other conditions such as Lafora's disease and normal ageing. Brain 103 (2):315-36. PMID: 6249438. .
- Hatakeyama S, Nakayama KI (2003) U-box proteins as a new family of ubiquitin ligases. Biochem Biophys Res Commun 302 (4):635-45. PMID: 12646216.
- Conaway RC, Brower CS, Conaway JW (2002) Emerging roles of ubiquitin in transcription regulation. Science 296 (5571):1254-8. DOI: 10.1126/science.1067466 PMID: 12016299.
- Pickart CM (2001) Ubiquitin enters the new millennium. Mol Cell 8 (3):499-504. PMID: 11583613.
Key source:
Delgado-Escueta, A. V., Guerrini, R., Medina, M. T., Genton, P., Bureau, M., Dravet, C., Perez-Gosiengfiao, K. T., Martinez-Juarez, I. E., & Duron, R. M. (Eds.). (2004). Myoclonic Epilepsies: Advances in Neurology (1st ed.). Lippincott Williams & Wilkins.