Wednesday, 08 January 2025

Main

Information
Last updated: 19 June 2024 Print

Investigations in Movement Disorders

Information
Investigations, movement disordersinvestigations

Infancy (first 2 years of life)

  • Neonatal Prader - Willi syndrome - hypokinesia and limb dystonia - fluorescent in situ hybridization/multiplex ligation-dependent probe amplification for deletion paternally inherited chromosome 15
  • Neonatal hyperekplexia/startle - GLRA1 and GlyT2 mutations
  • Disorders of monoamine metabolism - temperature instability, oculogyric crises, lethargy and parkinsonism - plasma amino adds, CSF neurotransmitters pterins
  • Although dopa-responsive dystonia usually presents later, this disorder should be considered in any infant with a pure dystonic disorder and oral levodopa trial initiated
  • Glutaric acidura type 1 - usually after acute encephalopathy but not always; dystonia and choreoathetosis - urine organic acids
  • Mitochondrial disorders - dystonias - MRI, lactates, enzyme activities, genes (e.g. pyruvate dehydrogenase, POLG1)
  • Methaemoglobinaemia type 2 - microcephaly, dystonia, mild cyanosis -red cell methaemoglobin, gene NADH - cytochrome b 5 reductase
  • Post-herpes encephalitis - ballismus - CSF, herpes simplex virus polymerase chain reaction though likely negative
  • Lesch-Nyhan syndrome - choreoathetosis superimposed on gross motor delay (usually followed by self-mutilation) - urine uric acid, hypoxanthine phosphoribosyltransferase 1 assay red cells or cultured fibroblasts.
  • Shuddering and benign infantile spasms - tremor-like spasms - video, video-EEG if in doubt
  • Infantile masturbation - repeated dystonic adduction of the thighs - video
  • Transient dystonia of infancy - episodes of dystonic posturing especially of upper limbs distally - home video

Older Children

Acute-Onset Movement Disorders
Condition Movement disorder(s) Investigation
Drugs (neuroleptic) Dystonia, oculogyric crises, torticollis Video
Arterial ischaemic stroke Chorea, dystonia, etc. Brain MRI, MRA ± catheter cerebral angiography
Sydenham chorea Chorea ECG, antistreptolysin 0 titre, anti-DNAaseB titre
Anti-NMDA receptor encephalitis Orofacial dyskinesia, and alternating violent limb dyskinesia and akinesia Anti-NMDA receptor antibodies, CSF oligoclonal bands
Immune-mediated chorea encephalopathy Chorea ± oculogyric crises, rigidity (not clear if different from anti-NMDA receptor encephalitis) CSF oligoclonal bands
Systemic lupus erythematosus Chorea Anti-DNA antibodies, etc. (auto-antibody battery), CSFINF-a
Glutaric aciduria type 1 Choreoathetosis, dystonia (usually postencephalopathy) Brain MRI, urine organic acids
Mitochondrial Dystonia MRI
Pyruvate dehydrogenase deficiency Dystonia (may be paroxysmal) MRI (globus pallidus signal change), ± H-MRS, lactates, PDH activity in fibroblasts
Rapid-onset dystonia parkinsonism (DYT12) Upper-limb dystonia, bulbar symptoms (parkinsonism later) Video. Gene test: ATP1A3
Paroxysmal movement disorders  
Condition Movement disorder(s) Investigation
Alternating hemiplegia of childhood Dystonia, ocular deviation and monocular nystagmus, limp attacks, bath-induced in one third Home video
Paroxysmal kinesigenic dyskinesia Choreoathetosis on sudden voluntary movement, family history Home video (gene1)
Paroxysmal non-kinesigenic dyskinesia Chorea and dystonia, family history, alcohol and caffeine provocation in family members Home video (gene1)
Paroxysmal exertional dyskinesia Choreoathetosis during sustained exercise, family history Family video. Blood film (echinocytes). GLUT1 deficiency (fasting blood and CSF glucose)
Infantile convulsions with paroxysmal dyskinesia Choreoathetosis, kinesigenic or exercise induced, with history of infantile clonic epileptic seizures Home video (gene2)
GLUT1 deficiency Variable, usually with epilepsy also, meal related Low fasting CSF/blood glucose ratio; red cell GLUT1 assay; SLC2A1 gene
1 Gene test may be available but not normally indicated.  
2 Gene localized to centromere of chromosome 16 but not helpful in individual diagnosis  
Chronic or progressive movement disorder  
Type of movement disorder Condition Investigation
Mixed movement disorder Wilson disease (onset over age 5 years, usually over 7 years) Serum copper, copper oxidase, 24h urine copper ± liver copper. Gene mutation
  Guanidinoacetate methyltransferase deficiency (dystonia, ballismus) Brain H-MRS ± urine guanidinoacetate
  Mitochondrial Brain MRI, H-MRS
  Myoclonus-dystonia (DYT11) Video. SGCE gene mutation
  Rapid-onset dystonia parkinsonsim (DYT12) Video. ATP1A3 gene mutation
  Dystonia-parkinsonism (DYT16), not rapid onset PRKRA gene mutation
  Juvenile parkinsonism Fluoride-PET. Several genes
Dystonia Idiopathic torsion dystonia (DYT1) Gene - Torsin A
  Dopa-responsive dystonia (DRD=DYT5) Levodopa trial, GCH1 gene
Chorea Benign hereditary chorea TITF-1 gene mutation
  Hypoparathyroidism Plasma calcium and phosphorus, ECG for QTc, CT/MRI (calcification of basal ganglia and white matter), better seen on CT
  Lesch-Nyhan (choreoathetosis) Urine uric acid, red-cell hypoxanthine phosphoribosyltransferase
Tremor Essential tremor Frequency analysis possible
  Hyperthyroidism Thyroid function tests
  B12 deficiency (also after treatment) Blood film, B12 urine organic acids, spinal cord MRI
Myoclonus Many metabolic and epileptic conditions Biochemistry, EEG
  Myoclonus-dystonia (DYT11) - begins with dystonic toddler gait (under age 3y) that may be forgotten, later lightning jerks of upper limbs dominate Home video including archival footage. SGCE gene mutation
  Restless legs syndrome Night video; levodopa trial has not been evaluated as a diagnostic test in children; polysomnography might add
Tics Tourette syndrome No tests (significance of anti-basal ganglia antibodies unclear)

Movement disorders in individuals with learning disability

Most of the abnormal movements in those with severe learning disability, in particular various kinds of stereotypy, do not help in clinical diagnosis and do not suggest particular neurological investigations. However, sound-startle induced falls that resemble cataplexy or hyperekplexia point to Coffm-Lowry syndrome (investigation: home or clinic video, possible gene analysis see Chapter 3.14), and status dystonicus in a boy with epileptic infantile spasms will prompt ARX mutation analysis (see Chapter 3.15).

In another ARX phenotype boys have focal dystonia with an X-linked inheritance. A prominent movement disorder in a boy with mild facial dysmorphism will prompt estimation of free T3 (triiodothyroxine) and, if elevated, mutation analysis of MCT8 (monocarboxylate transporter 8 gene).

Login to Read More